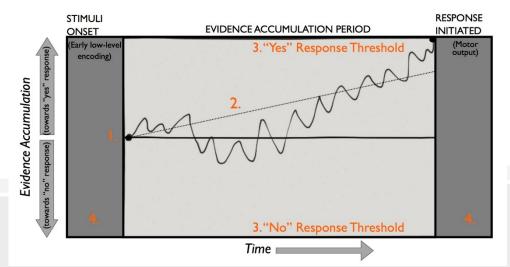
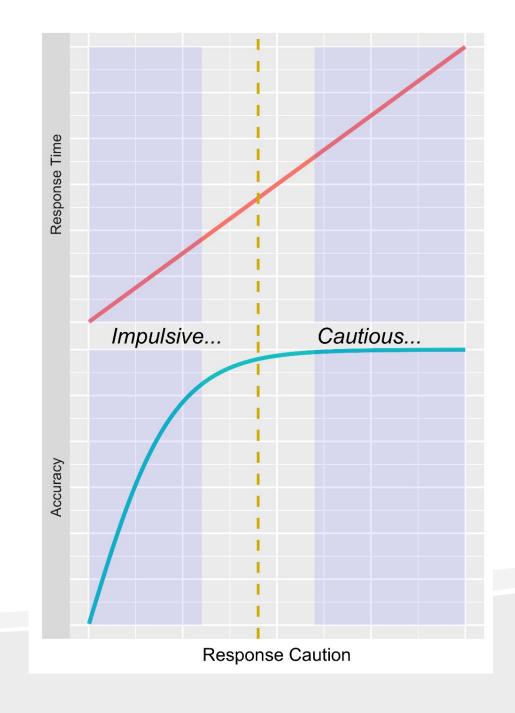
Estimating the speed-accuracy tradeoff "Sweet Spot" in language performance for people with aphasia: replication and extension of a diffusion-model based approach

Yina Quique 1, Rob Cavanaugh 2, Jeff Stanrs 3, William Hula 4, Emily Boss 5, William Evans 2 1 Northwestern University; 2 University of Pittsburgh; 3 University of Massachusetts Amherst; 4 VA Pittsburgh Health Care System; 5 Integrative Reconnective Aphasia Therapy

Introduction


• Speed-accuracy tradeoffs (SATs)


↑ time ↑ accuracy (Ratcliff, 1987; Wickelgren, 1977)

• 40% people with aphasia set maladaptive SATs (Evans et al., 2019)

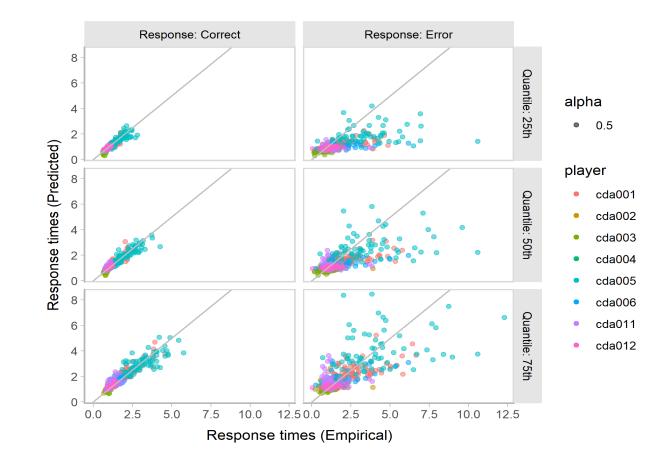
SATs were characterized using the Point of Adaptive Returns (PAR), the "sweet spot."

• *Limitations*: preliminary findings, PAR reliability is unknown, needs ecologically-valid tasks.

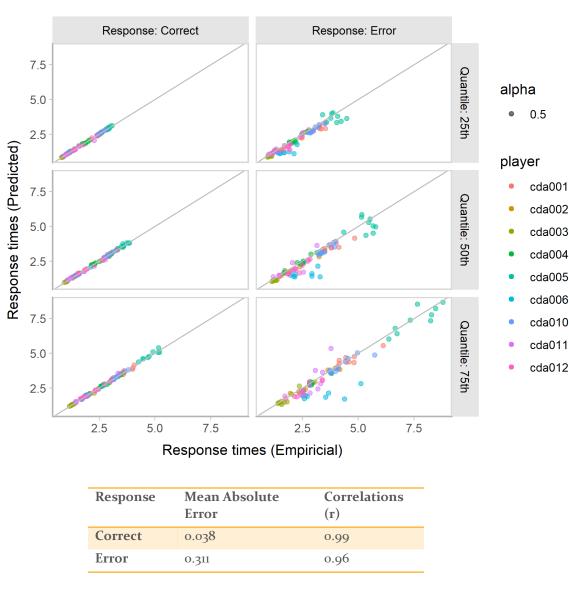
- 1a. Replicate estimation of SATs on a second sample
- **1b.** Evaluate test-retest reliability of PAR.
- **2a.** Evaluate the diffusion model SATs in SFV responses.
- **2b.** Investigate change in PAR and response threshold adaptation over time in response to training
 - Investigate whether PWA's SFV "sweet spot" is associated with naming treatment outcomes.

- 9 PWA in a multiple baseline study
 - 9-10 sessions of SFV
 - Computer-based speed and accuracy feedback + metacognitive training.
- 320-trial lexical decision task
 - 3-5 baseline points

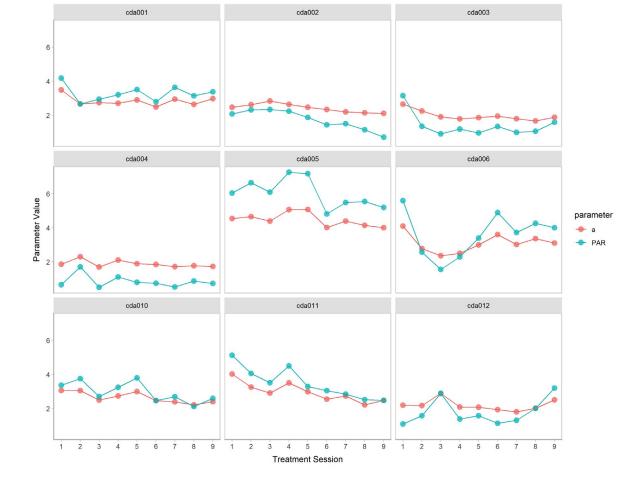
	Sex	Age	МРО	Comp of Spoken Language CAT	Comp of Written Language CAT	Repetition CAT	Naming CAT
pı	М	63	259	52	51	47	48
p 2	М	73	194	48	53	47	53
P3	М	68	21	55	58	55	59
P4	М	70	522	53	53	52	54
P5	М	70	39	55	50	53	49
p6	F	71	8	57	55	52	54
P 7	М	70	9	44	35	60	46
p8	М	54	18	49	51	47	53
P9	М	72	58	49	61	46	55


1a. (Replication). Model fit on a second sample (Ratcliff et al., 2002)
1b. (Test-retest). PAR correlation between baselines 1-2 and 2-3
2a. (+ Ecological). Model fit on SFV responses.
2b. (PAR over time). Examination of PAR and response threshold

adaptation for SFV over time and correlation with treatment effect sizes.



1a. Model fit was acceptable on a second LD sample


1b. PAR correlation between baselines 1-2 (*r*=0.62, *p*=.08) and 2-3 (*r*=0.94, *p*<.001)

Parameter	Mean LD	Std dev. LD	Mean SFV	Std dev. SFV
Response threshold separation (a)	2.07	0.78	2.71	0.80
Starting point (z _r)	0.48	0.07	0.47	0.04
Drift rate (v_upper)	1.61	0.76	1.35	0.37
Drift rate (v_lower)	-1.56	0.67	-1.32	0.33
Non decision response time (t _o)	0.61	0.17	1.39	0.67
SZľ	0.19	0.09	0.08	0.11
st _o	0.20	0.03	0.80	0.48
SV	0.37	0.11	0.55	0.24

2a. Model fit was acceptable on SFV responses.

2b. Response caution (*a*) and PAR declined over time (Ratcliff et al., 2006).
No relationship between response threshold adaptation and effect sizes for: trained items (*r*=-0.42;*p*=.58)
related items, (*r*=-0.13;*p*=.81)
unrelated items (*r*=0.28;*p*=.58)

Discussion

- Successful replication of previous findings
- Diffusion model fit LD and SFV data well, especially for correct responses.
- Moderate correlation (baselines 1-2), strong correlation (baselines 2-3). Once familiarized with the task, PAR is a reliable measure of SAT optimality.
- Successful extension of the diffusion model and PAR to SFV.
- PWA became less cautions over time, without improvements in threshold optimality. It may indicate a stable trait measure, rather than a malleable factor.
- Diffusion model can help to understand SAT for people with aphasia

References & Acknowledgements

This research was funded by the VA Pittsburgh Healthcare System Geriatric Research Education and Clinical Center, the VA Healthcare Network- VISN 4 Competitive Career Development Fund, and the VA RR&D service (IK1 RX002475), with funds awarded to William S. Evans.

- Boyle, M, Semantic Feature Analysis Treatment for Aphasic Word Retrieval Impairments: What's in a Name?, Topics in Stroke Rehabilitation, 2010 17(6): p. 411-422.
- Evans, W.S., W.D. Hula, and J.J. Starns, *Speed–Accuracy Trade-Offs and Adaptation Deficits in Aphasia: Finding the "Sweet Spot" Between Overly Cautious and Incautious Responding*. American Journal of Speech-Language Pathology, 2019. 28(1S): p. 259-277.
- Ratcliff, R., A theory of memory retrieval. Psychological review, 1978. 85(2): p. 59-108.
- Ratcliff, R. and F. Tuerlinckx, *Estimating parameters of the diffusion model: Approaches to dealing with contaminant reaction times and parameter variability.* Psychonomic Bulletin & Review, 2002. 9(3): p. 438-481.
- Ratcliff, R., Thapar, A., & McKoon, G. (2006). Aging, practice, and perceptual tasks: a diffusion model analysis. *Psychology and aging*, *21*(2), 353.
- Wickelgren, W.A., Speed-accuracy tradeoff and information processing dynamics. Acta psychologica, 1977. 41(1): p. 67-85.